DocumentCode
1759914
Title
Bias-compensated normalised LMS algorithm with noisy input
Author
Kang, Bing ; Yoo, Jerald ; Park, Pyeongyeol
Author_Institution
Dept. of Electr. Eng., Pohang Univ. of Sci. & Technol., Pohang, South Korea
Volume
49
Issue
8
fYear
2013
fDate
April 11 2013
Firstpage
538
Lastpage
539
Abstract
A new bias-compensated normalised least mean square (NLMS) algorithm for parameter estimation with a noisy input is proposed. The algorithm is obtained from an approximated cost function based on the statistical properties of the input noise and involves a condition checking constraint to decide whether the weight coefficient vector must be updated. Simulation results show that the proposed algorithm is more robust and accurate than the conventional method.
Keywords
adaptive filters; least mean squares methods; parameter estimation; bias compensated normalised LMS algorithm; condition checking constraint; input noise; least mean square algorithm; noisy input; parameter estimation; statistical properties;
fLanguage
English
Journal_Title
Electronics Letters
Publisher
iet
ISSN
0013-5194
Type
jour
DOI
10.1049/el.2013.0246
Filename
6527546
Link To Document