• DocumentCode
    1759914
  • Title

    Bias-compensated normalised LMS algorithm with noisy input

  • Author

    Kang, Bing ; Yoo, Jerald ; Park, Pyeongyeol

  • Author_Institution
    Dept. of Electr. Eng., Pohang Univ. of Sci. & Technol., Pohang, South Korea
  • Volume
    49
  • Issue
    8
  • fYear
    2013
  • fDate
    April 11 2013
  • Firstpage
    538
  • Lastpage
    539
  • Abstract
    A new bias-compensated normalised least mean square (NLMS) algorithm for parameter estimation with a noisy input is proposed. The algorithm is obtained from an approximated cost function based on the statistical properties of the input noise and involves a condition checking constraint to decide whether the weight coefficient vector must be updated. Simulation results show that the proposed algorithm is more robust and accurate than the conventional method.
  • Keywords
    adaptive filters; least mean squares methods; parameter estimation; bias compensated normalised LMS algorithm; condition checking constraint; input noise; least mean square algorithm; noisy input; parameter estimation; statistical properties;
  • fLanguage
    English
  • Journal_Title
    Electronics Letters
  • Publisher
    iet
  • ISSN
    0013-5194
  • Type

    jour

  • DOI
    10.1049/el.2013.0246
  • Filename
    6527546