• DocumentCode
    176045
  • Title

    Stochastic gradient algorithm for state space system with d-step delay

  • Author

    Ya Gu ; Rui Ding

  • Author_Institution
    Key Lab. of Adv. Process Control for Light Ind. (Minist. of Educ.), Jiangnan Univ., Wuxi, China
  • fYear
    2014
  • fDate
    May 31 2014-June 2 2014
  • Firstpage
    1924
  • Lastpage
    1928
  • Abstract
    This paper researches parameter and state estimation problems for linear systems with d-step delay. Combining the linear transformation and the property of the shift operator, the canonical state space model with d-step delay is transformed into an identification model. The stochastic gradient algorithm is raised to identify the parameter vectors. Finally, an example is presented to validate the given algorithms.
  • Keywords
    delay systems; gradient methods; linear systems; state estimation; state-space methods; stochastic processes; canonical state space model; d-step delay; linear systems; linear transformation; parameter estimation problems; parameter vector identification; shift operator property; state estimation problems; state space system; stochastic gradient algorithm; Computational modeling; Heuristic algorithms; Mathematical model; Signal processing algorithms; Stochastic processes; Vectors; State space models; Stochastic gradient algorithm; Time-delay;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control and Decision Conference (2014 CCDC), The 26th Chinese
  • Conference_Location
    Changsha
  • Print_ISBN
    978-1-4799-3707-3
  • Type

    conf

  • DOI
    10.1109/CCDC.2014.6852484
  • Filename
    6852484