DocumentCode :
1762648
Title :
Energy/Reliability Trade-Offs in Low-Voltage ReRAM-Based Non-Volatile Flip-Flop Design
Author :
Kazi, Ibrahim ; Meinerzhagen, Pascal ; Gaillardon, Pierre-Emmanuel ; Sacchetto, Davide ; Leblebici, Yusuf ; Burg, Andreas ; De Micheli, G.
Author_Institution :
Integrated Syst. Lab. (LSI), EPFL, Lausanne, Switzerland
Volume :
61
Issue :
11
fYear :
2014
fDate :
Nov. 2014
Firstpage :
3155
Lastpage :
3164
Abstract :
The total power budget of Ultra-Low Power (ULP) VLSI Systems-on-Chip (SoCs) is often dominated by the leakage power of embedded memories as well as status registers. On the one hand, supply voltage scaling down to the near-threshold (near- VT) or even to the subthreshold (sub- VT) domain is a commonly used, efficient technique to reduce both leakage power and active energy dissipation. On the other hand, emerging CMOS-compatible device technologies such as Resistive Memories (ReRAMs) enable non-volatile, on-chip data storage and zero-leakage sleep periods. For the first time, we present and compare ReRAM-based Non-Volatile Flip-Flop (NVFF) topologies which are optimized for low-voltage operation (including near-VT and sub-VT operation). Three low-voltage NVFF circuit topologies are proposed and evaluated in terms of energy dissipation and reliability. Using topologies with two complementary programmed ReRAM devices, Monte Carlo simulations accounting for parametric variations confirm reliable data restore operation from the ReRAM devices at a sub- VT voltage as low as 400 mV. A topology using a single ReRAM device exhibits lower write energy, but requires a near-VT voltage for robust read. Energy characterization is performed at nominal, near- VT, and sub- VT supply voltages. The minimum energy point is reached for near- VT read operation with a total read+write energy of 735 fJ.
Keywords :
Monte Carlo methods; VLSI; flip-flops; logic design; low-power electronics; network topology; random-access storage; reliability; system-on-chip; Monte Carlo simulations; NVFF circuit topology; ReRAM based nonvolatile flip-flop design; SoC; active energy dissipation; embedded memories; energy-reliability trade-off; leakage power; resistive memories; status registers; ultra-low power VLSI systems-on-chip; voltage 400 mV; zero-leakage sleep periods; CMOS integrated circuits; Inverters; Latches; Nonvolatile memory; Reliability; Topology; Transistors; Flip-flops; low-power electronics; nonvolatile memory;
fLanguage :
English
Journal_Title :
Circuits and Systems I: Regular Papers, IEEE Transactions on
Publisher :
ieee
ISSN :
1549-8328
Type :
jour
DOI :
10.1109/TCSI.2014.2334891
Filename :
6857429
Link To Document :
بازگشت