DocumentCode :
1763631
Title :
Schroedinger Eigenmaps for the Analysis of Biomedical Data
Author :
Czaja, Wojciech ; Ehler, M.
Author_Institution :
Dept. of Math., Univ. of Maryland, College Park, MD, USA
Volume :
35
Issue :
5
fYear :
2013
fDate :
41395
Firstpage :
1274
Lastpage :
1280
Abstract :
We introduce Schroedinger Eigenmaps (SE), a new semi-supervised manifold learning and recovery technique. This method is based on an implementation of graph Schroedinger operators with appropriately constructed barrier potentials as carriers of labeled information. We use our approach for the analysis of standard biomedical datasets and new multispectral retinal images.
Keywords :
eigenvalues and eigenfunctions; graph theory; learning (artificial intelligence); medical image processing; retinal recognition; SE; biomedical data analysis; graph Schroedinger operators; multispectral retinal images; schroedinger Eigenmaps; semisupervised manifold learning; Biomedical imaging; Eigenvalues and eigenfunctions; Kernel; Labeling; Laplace equations; Manifolds; Vectors; Laplacian Eigenmaps; Schroedinger Eigenmaps; Schroedinger operator on a graph; barrier potential; dimension reduction; manifold learning; Algorithms; Artificial Intelligence; Biomedical Research; Breast Neoplasms; Data Interpretation, Statistical; Data Mining; Databases, Factual; Female; Heart Diseases; Humans; Pattern Recognition, Automated; Retinal Diseases;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/TPAMI.2012.270
Filename :
6389681
Link To Document :
بازگشت