Title :
Monofilament
Wire for a Whole-Body MRI Magnet: Superconducting Joints and Test Coils
Author :
Jiayin Ling ; Voccio, John ; Youngjae Kim ; Seungyong Hahn ; Bascunan, Juan ; Park, D.K. ; Iwasa, Yukikazu
Author_Institution :
Francis Bitter Magn. Lab., Massachusetts Inst. of Technol., Cambridge, MA, USA
Abstract :
This paper presents recent results from our continued development of a 0.5 T whole-body MRI magnet at the Francis Bitter Magnet Laboratory. HyperTech Research Corp. (Columbus, OH) manufactures the MgB2 conductor for this project. During the past year, we have found that our technique, originally developed successfully to splice unreacted multifilament MgB2 wires, works much better, i.e., of higher reliability, with unreacted monofilament MgB2 wires. This has led us to wind the entire coil components in our persistent-mode MRI magnet with unreacted monofilament MgB2 wire, having a MgB2 core of 0.4 mm in diameter, an overall diameter of 0.8 mm bare, 1 mm S-glass insulated. To verify that these coils would not suffer from flux jumping, as they would if wound with monofilament NbTi wire, magnetization studies were performed on monofilament wires of MgB2 and NbTi (as a reference) at 4.2 K. For the monofilament MgB2 wire, the results were affirmative. To further ensure the absence of flux jumping that may quench these current-carrying coils, two test coils were wound with unreacted monofilament MgB2 wire. One MgB2 coil was operated in driven mode, while the other MgB2 coil, equipped with a persistent current switch and terminated with a superconducting joint, was operated in persistent mode. The operating temperature range was 4.2-15 K for these MgB2 coils. The driven mode coil was operated in self-field. The persistent mode coil achieved a persistent current of 100 A, corresponding to a self-field of ~ 1 T in the winding, for 1 hour with no measurable decay. Both test coils were operated quench free.
Keywords :
biomedical MRI; magnesium compounds; multifilamentary superconductors; superconducting magnets; Columbus, OH; Francis Bitter Magnet Laboratory; HyperTech Research Corp; MgB2; S-glass; coil components; conductor; current 100 A; current-carrying coils; flux jumping; magnetic flux density 0.5 tesla; magnetization studies; monofilament wires; size 0.4 mm; size 0.8 mm; size 1 mm; superconducting joints; temperature 4.2 K to 15 K; test coils; time 1 hour; whole-body MRI magnet; Coils; Joints; Magnetic flux; Magnetic resonance imaging; Superconducting filaments and wires; Superconducting magnets; Wires; $hbox{MgB}_{2}$ ; MRI; flux jumping; monofilament; persistent current mode; superconducting joints;
Journal_Title :
Applied Superconductivity, IEEE Transactions on
DOI :
10.1109/TASC.2012.2234183