Title :
System-Level Design Optimization Methods for Electrical Drive Systems: Deterministic Approach
Author :
Gang Lei ; Tianshi Wang ; Youguang Guo ; Jianguo Zhu ; Shuhong Wang
Author_Institution :
Sch. of Electr., Mech., & Mechatron. Syst., Univ. of Technol., Sydney, NSW, Australia
Abstract :
Electrical drive systems are key components in modern appliances, industry equipment, and systems, e.g., hybrid electric vehicles. To obtain the best performance of these drive systems, the motors and their control systems should be designed and optimized at the system level rather than the component level. This paper presents an effort to develop system-level design and optimization methods for electrical drive systems. Two system-level design optimization methods are presented in this paper: 1) single-level method (only at system level); and 2) multilevel method. Meanwhile, the approximate models, the design of experiments technique, and the sequential subspace optimization method are presented to improve the optimization efficiency. Finally, a drive system consisting of a permanent-magnet transverse flux machine with a soft magnetic composite core is investigated, and detailed results are presented and discussed. This is a high-dimensional optimization problem with 14 parameters mixed with both discrete and continuous variables. The finite-element analysis model and method are verified by the experimental results on the motor prototype. From the discussion, it can be found that the proposed multilevel method can increase the performance of the whole drive system, such as bigger output power and lower material cost, and decrease the computation cost significantly compared with those of single-level design optimization method.
Keywords :
design of experiments; electric drives; finite element analysis; hybrid electric vehicles; optimisation; permanent magnet machines; computation cost; continuous variables; control systems; design of experiments technique; deterministic approach; discrete variables; electrical drive systems; finite-element analysis model; high-dimensional optimization problem; hybrid electric vehicles; industry equipment; multilevel method; optimization efficiency; permanent-magnet transverse flux machine; sequential subspace optimization method; single-level design optimization method; soft magnetic composite core; system-level design optimization methods; Algorithm design and analysis; Design optimization; Finite element analysis; Predictive control; System-level design; Approximate models; finite-element methods (FEMs); model predictive control (MPC); multilevel design optimization; system-level design optimization; transverse flux machine (TFM);
Journal_Title :
Industrial Electronics, IEEE Transactions on
DOI :
10.1109/TIE.2014.2321338