DocumentCode :
1765435
Title :
Outlier-resistant adaptive filtering based on sparse Bayesian learning
Author :
Wei Zhu ; Jun Tang ; Shuang Wan ; Jie-Li Zhu
Author_Institution :
Dept. of Electron. Eng., Tsinghua Univ., Beijing, China
Volume :
50
Issue :
9
fYear :
2014
fDate :
April 24 2014
Firstpage :
663
Lastpage :
665
Abstract :
In adaptive processing applications, the design of the adaptive filter requires estimation of the unknown interference-plus-noise covariance matrix from secondary training data. The presence of outliers in the training data can severely degrade the performance of adaptive processing. By exploiting the sparse prior of the outliers, a Bayesian framework to develop a computationally efficient outlier-resistant adaptive filter based on sparse Bayesian learning (SBL) is proposed. The expectation-maximisation (EM) algorithm is used therein to obtain a maximum a posteriori (MAP) estimate of the interference-plus-noise covariance matrix. Numerical simulations demonstrate the superiority of the proposed method over existing methods.
Keywords :
Bayes methods; adaptive filters; covariance matrices; expectation-maximisation algorithm; filtering theory; interference (signal); learning (artificial intelligence); EM algorithm; MAP estimation; SBL; adaptive processing applications; expectation-maximisation algorithm; maximum a posteriori estimation; outlier-resistant adaptive filtering; secondary training data; sparse Bayesian learning; unknown interference-plus-noise covariance matrix estimation;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el.2014.0238
Filename :
6809283
Link To Document :
بازگشت