• DocumentCode
    177489
  • Title

    Unsupervised Clustering of Depth Images Using Watson Mixture Model

  • Author

    Hasnat, M.A. ; Alata, O. ; Tremeau, A.

  • Author_Institution
    Univ. Jean Monnet, St. Etienne, France
  • fYear
    2014
  • fDate
    24-28 Aug. 2014
  • Firstpage
    214
  • Lastpage
    219
  • Abstract
    In this paper, we propose an unsupervised clustering method for axially symmetric directional unit vectors. Our method exploits the Watson distribution and Bregman Divergence within a Model Based Clustering framework. The main objectives of our method are: (a) provide efficient solution to estimate the parameters of a Watson Mixture Model (WMM), (b) generate a set of WMMs and (b) select the optimal model. To this aim, we develop: (a) an efficient soft clustering method, (b) a hierarchical clustering approach in parameter space and (c) a model selection strategy by exploiting information criteria and an evaluation graph. We empirically validate the proposed method using synthetic data. Next, we apply the method for clustering image normals and demonstrate that the proposed method is a potential tool for analyzing the depth image.
  • Keywords
    image processing; parameter estimation; pattern clustering; statistical distributions; vectors; Bregman divergence; WMM; Watson distribution; Watson mixture model; axially symmetric directional unit vectors; evaluation graph; hierarchical clustering approach; image normals; information criteria; model selection strategy; model-based clustering framework; optimal model selection; parameter estimation; soft clustering method; unsupervised depth image clustering; Clustering methods; Computational modeling; Data models; Image analysis; Integrated circuit modeling; Mathematical model; Vectors; Depth Image Analysis; Mixture Model; Model Based Clustering; Unsupervised Clustering; Watson Distribution;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Pattern Recognition (ICPR), 2014 22nd International Conference on
  • Conference_Location
    Stockholm
  • ISSN
    1051-4651
  • Type

    conf

  • DOI
    10.1109/ICPR.2014.46
  • Filename
    6976757