DocumentCode :
1775581
Title :
Terminal ILC design and analysis via a dynamical predictive model
Author :
Ronghu Chi ; Zhongsheng Hou ; Shangtai Jin ; Chiang-Ju Chien ; Danwei Wang
Author_Institution :
Sch. of Autom. & Electron. Eng., Qingdao Univ. of Sci. & Technol., Qingdao, China
fYear :
2014
fDate :
18-20 June 2014
Firstpage :
1156
Lastpage :
1161
Abstract :
Terminal iterative learning control (TILC) has been developed to track a single desired point at the terminal end of operation interval over iterations. In this paper, the feedback control knowledge of previous time instants is utilized via an equivalent dynamical predictive model to update the input signals for the TILC problem. The proposed scheme consists of a control input updating law with feedback information and a parameter updating law together. The new approach is a data-driven control strategy where the controller design and analysis requires only the measurement I/O data without using any model information of the plant. The effectiveness of the proposed approach is guaranteed by rigorous analysis.
Keywords :
adaptive control; control system analysis; control system synthesis; feedback; iterative methods; learning systems; predictive control; TILC; control input updating law; controller analysis; controller design; data-driven control strategy; dynamical predictive model; feedback control knowledge; feedback information; parameter updating law; terminal ILC design; terminal iterative learning control; Analytical models; Convergence; Data models; Educational institutions; Electronic mail; Predictive models; Process control;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control & Automation (ICCA), 11th IEEE International Conference on
Conference_Location :
Taichung
Type :
conf
DOI :
10.1109/ICCA.2014.6871085
Filename :
6871085
Link To Document :
بازگشت