DocumentCode :
1779478
Title :
Blind wiretap channel with delayed CSIT
Author :
Lashgari, Sina ; Avestimehr, Amir Salman
Author_Institution :
Sch. of ECE, Cornell Univ., Ithaca, NY, USA
fYear :
2014
fDate :
June 29 2014-July 4 2014
Firstpage :
36
Lastpage :
40
Abstract :
We consider the Gaussian wiretap channel with a transmitter, a legitimate receiver, and k eavesdroppers (k ∈ ℕ), where the secure communication is aided via a jammer. We focus on the setting where the transmitter and the jammer are blind with respect to the state of channels to eavesdroppers, and only have access to delayed channel state information (CSI) of the legitimate receiver, which is referred to as “blind cooperative wiretap channel with delayed CSIT”. We show that a strictly positive secure Degrees of Freedom (DoF) of 1 over 3 is achievable irrespective of the number of eavesdroppers (k) in the network, and further, 1 over 3 is optimal assuming linear coding strategies at the transmitters. The converse proof is based on two key lemmas. The first lemma, named Rank Ratio Inequality, shows that if two distributed transmitters employ linear strategies, the ratio of the dimensions of received linear sub-spaces at the two receivers cannot exceed 3/2, due to delayed CSI. The second lemma implies that once the transmitters in a network have no CSI with respect to a receiver, the least amount of alignment will occur at that receiver, meaning that transmit signals will occupy the maximal signal dimensions at that receiver. Finally, we show that once the transmitter and the jammer form a single transmitter with two antennas, which we refer to as MISO wiretap channel, 1 over 2 is the optimal secure DoF when using linear schemes.
Keywords :
Gaussian channels; jamming; linear codes; radio transceivers; telecommunication security; transmitting antennas; CSI; DoF; Gaussian wiretap channel; MISO wiretap channel; antennas; blind cooperative wiretap channel; communication security; degrees of freedom; delayed CSIT; delayed channel state information; distributed transmitter; eavesdroppers; jammer; key lemmas; legitimate receiver; linear coding strategy; linear subspaces; rank ratio inequality; signal dimensions; transmit signals; Encoding; Jamming; Noise; Receivers; Transmitters; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory (ISIT), 2014 IEEE International Symposium on
Conference_Location :
Honolulu, HI
Type :
conf
DOI :
10.1109/ISIT.2014.6874790
Filename :
6874790
Link To Document :
بازگشت