DocumentCode :
1780177
Title :
Efficient compression of monotone and m-modal distributions
Author :
Acharya, Jayadev ; Jafarpour, Ashkan ; Orlitsky, Alon ; Suresh, A.T.
Author_Institution :
ECE Dept., UCSD, La Jolla, CA, USA
fYear :
2014
fDate :
June 29 2014-July 4 2014
Firstpage :
1867
Lastpage :
1871
Abstract :
We consider universal compression of n samples drawn independently according to a monotone or m-modal distribution over k elements. We show that for all these distributions, the per-sample redundancy diminishes to 0 if k = exp(o(n/log n)) and is at least a constant if k = exp(Ω(n)).
Keywords :
entropy codes; source coding; statistical distributions; m-modal distributions; monotone distribution; per-sample redundancy; universal compression; Channel coding; Entropy; Image coding; Manganese; Redundancy; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory (ISIT), 2014 IEEE International Symposium on
Conference_Location :
Honolulu, HI
Type :
conf
DOI :
10.1109/ISIT.2014.6875157
Filename :
6875157
Link To Document :
بازگشت