DocumentCode :
1780672
Title :
Aggregate channel features for multi-view face detection
Author :
Bin Yang ; Junjie Yan ; Zhen Lei ; Li, Stan Z.
Author_Institution :
Center for Biometrics & Security Res. & Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China
fYear :
2014
fDate :
Sept. 29 2014-Oct. 2 2014
Firstpage :
1
Lastpage :
8
Abstract :
Face detection has drawn much attention in recent decades since the seminal work by Viola and Jones. While many subsequences have improved the work with more powerful learning algorithms, the feature representation used for face detection still can´t meet the demand for effectively and efficiently handling faces with large appearance variance in the wild. To solve this bottleneck, we borrow the concept of channel features to the face detection domain, which extends the image channel to diverse types like gradient magnitude and oriented gradient histograms and therefore encodes rich information in a simple form. We adopt a novel variant called aggregate channel features, make a full exploration of feature design, and discover a multi-scale version of features with better performance. To deal with poses of faces in the wild, we propose a multi-view detection approach featuring score re-ranking and detection adjustment. Following the learning pipelines in Viola-Jones framework, the multi-view face detector using aggregate channel features shows competitive performance against state-of-the-art algorithms on AFW and FDDB test-sets, while runs at 42 FPS on VGA images.
Keywords :
face recognition; feature extraction; gradient methods; Viola-Jones framework; aggregate channel feature; detection adjustment; feature representation; gradient magnitude; multiview face detection; oriented gradient histogram; score reranking; Aggregates; Databases; Detectors; Face; Face detection; Feature extraction; Training;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Biometrics (IJCB), 2014 IEEE International Joint Conference on
Conference_Location :
Clearwater, FL
Type :
conf
DOI :
10.1109/BTAS.2014.6996284
Filename :
6996284
Link To Document :
بازگشت