DocumentCode :
1783861
Title :
Estimation of parameters for generalized Gaussian distribution
Author :
Roenko, A.A. ; Lukin, V.V. ; Djurovic, Igor ; Simeunovic, Marko
Author_Institution :
Nat. Aerosp. Univ. named after N.E. Zhukovskiy KhAI, Kharkov, Ukraine
fYear :
2014
fDate :
21-23 May 2014
Firstpage :
376
Lastpage :
379
Abstract :
Shape parameter estimation procedures for generalized Gaussian distribution are considered. It is shown that the existing estimators can be divided into four groups: maximum likelihood algorithm; moment-based methods; entropy matching estimators and global convergence algorithm. Besides, properties of two recently introduced estimators of shape parameter are discussed. They are based on the combination of two procedures that use the evaluation of the fourth central moment and robust measure of kurtosis. Statistical properties of all considered estimators are investigated by means of defining their bias and variance values for samples of sizes 1000 and 4000 elements and shape parameter values ranging from 0.3 to 2.
Keywords :
Gaussian distribution; convergence of numerical methods; entropy; maximum likelihood estimation; method of moments; shape recognition; entropy matching estimators; fourth central moment evaluation; generalized Gaussian distribution; global convergence algorithm; kurtosis robust measure; maximum likelihood algorithm; moment-based methods; shape parameter estimation; shape parameter values; statistical properties; variance values; Accuracy; Entropy; Gaussian distribution; Maximum likelihood estimation; Parameter estimation; Shape; generalized Gaussian distribution; shape parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Communications, Control and Signal Processing (ISCCSP), 2014 6th International Symposium on
Conference_Location :
Athens
Type :
conf
DOI :
10.1109/ISCCSP.2014.6877892
Filename :
6877892
Link To Document :
بازگشت