DocumentCode :
178482
Title :
Pseudo-Marginal Bayesian Multiple-Class Multiple-Kernel Learning for Neuroimaging Data
Author :
O´Harney, A.D. ; Marquand, A. ; Rubia, K. ; Chantiluke, K. ; Smith, A. ; Cubillo, A. ; Blain, C. ; Filippone, M.
Author_Institution :
Sch. of Comput. Sci., Univ. of Glasgow, Glasgow, UK
fYear :
2014
fDate :
24-28 Aug. 2014
Firstpage :
3185
Lastpage :
3190
Abstract :
In clinical neuroimaging applications where subjects belong to one of multiple classes of disease states and multiple imaging sources are available, the aim is to achieve accurate classification while assessing the importance of the sources in the classification task. This work proposes the use of fully Bayesian multiple-class multiple-kernel learning based on Gaussian Processes, as it offers flexible classification capabilities and a sound quantification of uncertainty in parameter estimates and predictions. The exact inference of parameters and accurate quantification of uncertainty in Gaussian Process models, however, poses a computationally challenging problem. This paper proposes the application of advanced inference techniques based on Markov chain Monte Carlo and unbiased estimates of the marginal likelihood, and demonstrates their ability to accurately and efficiently carry out inference in their application on synthetic data and real clinical neuroimaging data. The results in this paper are important as they further work in the direction of achieving computationally feasible fully Bayesian models for a wide range of real world applications.
Keywords :
Markov processes; Monte Carlo methods; belief networks; image classification; inference mechanisms; learning (artificial intelligence); medical image processing; Gaussian process; Markov chain Monte Carlo method; advanced inference techniques; flexible classification capabilities; marginal likelihood; neuroimaging data; pseudo-marginal Bayesian multiple-class multiple-kernel learning; sound quantification; Approximation methods; Bayes methods; Convergence; Kernel; Monte Carlo methods; Neuroimaging; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition (ICPR), 2014 22nd International Conference on
Conference_Location :
Stockholm
ISSN :
1051-4651
Type :
conf
DOI :
10.1109/ICPR.2014.549
Filename :
6977261
Link To Document :
بازگشت