DocumentCode :
1788865
Title :
Channel-hopping based on available channel set for rendezvous of cognitive radios
Author :
Lu Yu ; Hai Liu ; Yiu-Wing Leung ; Xiaowen Chu ; Zhiyong Lin
Author_Institution :
Dept. of Comput. Sci., Hong Kong Baptist Univ., Hong Kong, China
fYear :
2014
fDate :
10-14 June 2014
Firstpage :
1573
Lastpage :
1579
Abstract :
Rendezvous is a necessary operation for cognitive users to establish communication links in cognitive radio networks (CRNs). To guarantee the rendezvous in finite time, all existing rendezvous algorithms generate CH (channel-hopping) sequences using the whole channel set and attempt rendezvous on each of the channels (i.e., both available channels and unavailable channels). In practice, the available channel set is usually a small portion of the whole channel set due to dynamics of channel availabilities and limited sensing capabilities of cognitive users. Thus, the CH sequences using the whole channel set may attempt unnecessary rendezvous in uncertain channels (e.g., unavailable channels or randomly-selected channels) which greatly degrades the performance. In this study, we propose a new rendezvous algorithm that generates channel-hopping sequences based on available channel set (CSAC) for more efficient rendezvous. We prove that CSAC gives guaranteed rendezvous and derive its upper-bound on maximum time-to-rendezvous (MTTR) which is an expression of the number of available channels instead of the number of all potential channels. To the best of our knowledge, CSAC is the first one in the literature that exploits the only available channels in designing CH sequences while providing guaranteed rendezvous. Experimental results show that CSAC can significantly improve the MTTR compared to state-of-the-art.
Keywords :
cognitive radio; radio spectrum management; wireless channels; CH sequence generation; CSAC; MTTR; available channel set; channel-hopping sequence generation; cognitive radio networks; communication links; limited sensing capabilities; maximum time-to-rendezvous algorithm; randomly-selected channels; unavailable channels; wireless networks; Algorithm design and analysis; Availability; Cognitive radio; Receivers; Sensors; Servers; Silicon; channel hopping; cognitive radio; rendezvous;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Communications (ICC), 2014 IEEE International Conference on
Conference_Location :
Sydney, NSW
Type :
conf
DOI :
10.1109/ICC.2014.6883546
Filename :
6883546
Link To Document :
بازگشت