• DocumentCode
    179746
  • Title

    Supervised multi-modal topic model for image annotation

  • Author

    Thu Hoai Tran ; Seungjin Choi

  • Author_Institution
    Dept. of Comput. Sci. & Eng., POSTECH, Pohang, South Korea
  • fYear
    2014
  • fDate
    4-9 May 2014
  • Firstpage
    5979
  • Lastpage
    5983
  • Abstract
    Multi-modal topic models are probabilistic generative models where hidden topics are learned from data of different types. In this paper we present supervised multi-modal latent Dirichlet allocation (smmLDA), where we incorporate class label (global description) into the joint modeling of visual words and caption words (local description), for image annotation task. We derive variational inference algorithm to approximately compute posterior distribution over latent variables. Experiments on a subset of LabelMe dataset demonstrate the useful behavior of our model, compared to existing topic models.
  • Keywords
    image processing; inference mechanisms; variational techniques; caption words modeling; global description; image annotation; labelme dataset subset; latent variables; local description; posterior distribution computation; probabilistic generative models; smmLDA; supervised multimodal latent Dirichlet allocation; supervised multimodal topic model; variational inference algorithm; visual words modeling; Bayes methods; Computational modeling; Computer vision; Data models; Joints; Resource management; Visualization; Image annotation; latent Dirichlet allocation; topic models;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on
  • Conference_Location
    Florence
  • Type

    conf

  • DOI
    10.1109/ICASSP.2014.6854751
  • Filename
    6854751