• DocumentCode
    1797997
  • Title

    Improving machine vision via incorporating expectation-maximization into Deep Spatio-Temporal learning

  • Author

    Min Jiang ; Yulong Ding ; Goertzel, Ben ; Zhongqiang Huang ; Changle Zhou ; Fei Chao

  • Author_Institution
    Dept. of Cognitive Sci., Xiamen Univ., Xiamen, China
  • fYear
    2014
  • fDate
    6-11 July 2014
  • Firstpage
    1804
  • Lastpage
    1811
  • Abstract
    The Deep Spatio-Temporal Inference Network (DeSTIN) is a deep learning architecture which combines un-supervised learning and Bayesian inference. The original version of DeSTIN incorporates k-means clustering inside each processing node. Here we propose to replace k-means with a more sophisticated algorithm, online EM (Expectation Maximization), and show that this improves DeSTIN´s performance on image classification and restoration tasks.
  • Keywords
    belief networks; computer vision; expectation-maximisation algorithm; image classification; image restoration; unsupervised learning; Bayesian inference; DeSTIN; deep spatio-temporal inference network; deep spatio-temporal learning; expectation-maximization method; image classification; image restoration; machine vision; unsupervised learning; Approximation methods; Clustering algorithms; Convergence; Noise; Noise measurement; Training; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Neural Networks (IJCNN), 2014 International Joint Conference on
  • Conference_Location
    Beijing
  • Print_ISBN
    978-1-4799-6627-1
  • Type

    conf

  • DOI
    10.1109/IJCNN.2014.6889723
  • Filename
    6889723