DocumentCode :
1798374
Title :
Planning-driven behavior selection network for controlling a humanoid robot
Author :
Yu-Jung Chae ; Sung-Bae Cho
Author_Institution :
Dept. of Comput. Sci., Yonsei Univ., Seoul, South Korea
fYear :
2014
fDate :
6-11 July 2014
Firstpage :
4244
Lastpage :
4250
Abstract :
A humanoid robot has uncertain sensor data, and produces larger errors arising from the control process than other types of robot having wheels. The humanoid robot for providing service should not only generate proper behaviors to accomplish goals in unstable environments, but also consider flexible scalability to reflect demanding user´s requests. We propose a control system based on planning-driven behavior selection network so as to generate autonomous behaviors of the robot rapidly and suitably. In this paper, the behavior selection network, one of behavior-based methods, is modularized considering sub-goals. The STRIPS planning makes a sequence of robot behaviors automatically by controlling the modules. The proposed system can control the robot to cope with the various environments, as well as to achieve goals according to the user´s demand. Moreover, since the BSN and STRIPS planning structures are internally independent, the proposed system is scalable flexibly to increasing user requests. We confirm the usability of the proposed system by performing several test scenarios with NAO robot. Experiments show that the proposed system is able to make a behavioral sequence to fulfill goals appropriately, and can create behaviors of the robot in the various situations. We can also confirm an accuracy of 85.7% through applying the proposed system in the real world.
Keywords :
humanoid robots; service robots; BSN planning structures; NAO robot; STRIPS planning structures; autonomous robot behaviors; behavior-based methods; humanoid robot; planning-driven behavior selection network; Control systems; Humanoid robots; Planning; Robot sensing systems; Scalability; Strips; Behavior selection network; Humanoid robot; Hybrid control system; STRIPS planning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks (IJCNN), 2014 International Joint Conference on
Conference_Location :
Beijing
Print_ISBN :
978-1-4799-6627-1
Type :
conf
DOI :
10.1109/IJCNN.2014.6889922
Filename :
6889922
Link To Document :
بازگشت