DocumentCode :
1800403
Title :
Optimal Interleaving Schemes for 2-D Arrays
Author :
Golomb, S.W. ; Mena, Rodrigo ; Wen-Qing Xu
Author_Institution :
Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089
fYear :
2006
fDate :
Oct. 2006
Firstpage :
540
Lastpage :
543
Abstract :
Given an m x n array of k single random error correction (or erasure) codewords, each having length l such that mn = kl, we construct optimal interleaving schemes that provide the maximum burst error correction power such that an arbitrarily shaped error burst of size t can be corrected for the largest possible value of t. We show that for all such m x n arrays, the maximum possible interleaving distance, or equivalently, the largest value of t such that an arbitrary error burst of size up to t can be corrected, is bounded by [¿2k] if k ¿ [(min{m, n})2/2], and by min{m, n} + [(k -[(min{m, n})2/2])/ min{m, n}] if k ¿ [(min{m, n})2/2]. We generalize the cyclic shifting algorithm developed by the authors in a previous paper and construct, in several special cases, optimal interleaving arrays achieving these upper bounds.
Keywords :
Clustering algorithms; Error correction; Error correction codes; Interleaved codes; Lattices; Mathematics; Shape; Upper bound;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Workshop, 2006. ITW '06 Punta del Este. IEEE
Conference_Location :
Punta del Este, Uruguay
Print_ISBN :
1-4244-0035-X
Electronic_ISBN :
1-4244-0036-8
Type :
conf
DOI :
10.1109/ITW.2006.322876
Filename :
4117531
Link To Document :
بازگشت