DocumentCode :
180049
Title :
On Fast algorithms for orthogonal Tucker decomposition
Author :
Anh-Huy Phan ; Cichocki, Andrzej ; Tichavsky, Petr
Author_Institution :
Brain Sci. Inst., RIKEN, Wako, Japan
fYear :
2014
fDate :
4-9 May 2014
Firstpage :
6766
Lastpage :
6770
Abstract :
We propose algorithms for Tucker tensor decomposition, which can avoid computing singular value decomposition or eigenvalue decomposition of large matrices as in the work-horse higher order orthogonal iteration (HOOI) algorithm. The novel algorithms require computational cost of O(I3R), which is cheaper than O(I3R + IR4 + R6) of HOOI for multilinear rank-(R, R, R) tensors of size I × I × I.
Keywords :
iterative methods; singular value decomposition; tensors; Cayley transform; Crank-Nicholson-like scheme; Tucker tensor decomposition; eigenvalue decomposition; multilinear rank tensor; orthogonal Tucker decomposition; singular value decomposition; work-horse higher order orthogonal iteration algorithm; Approximation algorithms; Approximation error; Matrix decomposition; Signal processing; Tensile stress; Vectors; Cayley transform; Crank-Nicholson-like scheme; Tucker decomposition; orthogonality constraint; tensor decomposition;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on
Conference_Location :
Florence
Type :
conf
DOI :
10.1109/ICASSP.2014.6854910
Filename :
6854910
Link To Document :
بازگشت