DocumentCode :
1800595
Title :
Pricing American continuous-installment put option in a jump-diffusion model
Author :
Deng Guohe
Author_Institution :
Sch. of Math., Guangxi Normal Univ., Guilin, China
fYear :
2013
fDate :
26-28 July 2013
Firstpage :
8289
Lastpage :
8294
Abstract :
This paper presents the integral equation for the price of an American continuous-installment put option in the case where the stock price follows a double exponential jump-diffusion model using the Fourier inversion transform approach. We use trapezoidal rule to discrete the integral term and extend the Newton-Raphson method to solve the non-linear equation system for the optimal stopping and exercise boundaries. Some numerical results are provided to analyze the option price and free boundaries changing with some different parameter values in this model.
Keywords :
Fourier transforms; Newton-Raphson method; integral equations; nonlinear equations; pricing; American continuous-installment put option; Fourier inversion transform approach; Newton-Raphson method; double exponential jump-diffusion model; exercise boundaries; integral equation; jump-diffusion model; nonlinear equation system; optimal stopping; stock price; trapezoidal rule; Contracts; Educational institutions; Equations; Integral equations; Mathematical model; Numerical models; Pricing; American continuous-installment option; Fourier transform method; Jump-diffusion model;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference (CCC), 2013 32nd Chinese
Conference_Location :
Xi´an
Type :
conf
Filename :
6640904
Link To Document :
بازگشت