DocumentCode :
1802486
Title :
A polynomial chaos based Bayesian approach for on-line parameter estimation and control
Author :
Stavropoulou, Faidra ; Müller, Johannes
Author_Institution :
Inst. of Biomath. & Biometry, Helmholtz Zentrum Munchen, Munich, Germany
fYear :
2011
fDate :
28-30 Sept. 2011
Firstpage :
1391
Lastpage :
1396
Abstract :
We propose a method for on-line parameter estimation and control of dynamical systems with uncertainties. The unknown initial conditions and parameters of the system are estimated within a Bayesian framework as the data are provided sequentially while the underlying unknown state of the system is estimated through its polynomial chaos expansion. The state dependent feedback control is computed by the minimization of the expectation of an appropriate cost function. This work is motivated by the biological problem of controlling the glucose-insulin system in mice.
Keywords :
Bayes methods; chaos; minimisation; nonlinear control systems; nonlinear dynamical systems; parameter estimation; polynomials; biological problem; cost function minimization; dynamical systems control; glucose-insulin system; online parameter estimation; polynomial chaos based Bayesian approach; Bayesian methods; Chaos; Insulin; Mathematical model; Polynomials; Random variables; Sugar;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer-Aided Control System Design (CACSD), 2011 IEEE International Symposium on
Conference_Location :
Denver, CO
Print_ISBN :
978-1-4577-1066-7
Electronic_ISBN :
978-1-4577-1067-4
Type :
conf
DOI :
10.1109/CACSD.2011.6044548
Filename :
6044548
Link To Document :
بازگشت