DocumentCode :
1802561
Title :
Identification of induction machines using artificial neural networks
Author :
Martínez, Luis Zorzano ; Martínez, Antonio Zorzano
Author_Institution :
Dept. de Ingenieria Electrica, La Rioja Univ., Logrono, Spain
fYear :
1997
fDate :
7-11 Jul 1997
Firstpage :
1259
Abstract :
This paper shows an analysis of the use of artificial neural networks (ANNs) for induction machines identification, in order to use afterwards for the control of induction machines. A multilayer perceptron neural network with a hidden layer is trained with the backpropagation algorithm to identify the induction motor (IM) for getting the IM neural model. The neural network training process is analyzed with different scenarios (different number of hidden layer neurons, different learning rates and different sampling rates) in order to get neural networks parameters for practical implementations. Finally, the results of the trained neural networks for different load torque are shown
Keywords :
backpropagation; electric machine analysis computing; feedforward neural nets; identification; induction motors; multilayer perceptrons; artificial neural networks; backpropagation algorithm; feedforward neural net; hidden layer; hidden layer neurons; induction machines identification; learning rates; load torque; multilayer perceptron neural network; neural model; neural networks parameters; sampling rates; Artificial neural networks; Backpropagation algorithms; Induction machines; Induction motors; Multi-layer neural network; Multilayer perceptrons; Neural networks; Neurons; Sampling methods; Torque;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Industrial Electronics, 1997. ISIE '97., Proceedings of the IEEE International Symposium on
Conference_Location :
Guimaraes
Print_ISBN :
0-7803-3936-3
Type :
conf
DOI :
10.1109/ISIE.1997.648924
Filename :
648924
Link To Document :
بازگشت