DocumentCode :
1802841
Title :
Comparison of two different PNN training approaches for satellite cloud data classification
Author :
Tian, Bin ; Azimi-Sadjadi, Mahmood R. ; Gao, Wenfeng
Author_Institution :
Dept. of Electr. & Comput. Eng., Colorado State Univ., Fort Collins, CO, USA
Volume :
6
fYear :
1999
fDate :
36342
Firstpage :
3791
Abstract :
This paper presents a new training algorithm for probabilistic neural networks (PNNs) using the minimum classification error (MCE) criterion. A comparison is made between the MCE training scheme and the widely used maximum likelihood learning on a cloud classification problem using satellite imagery data
Keywords :
clouds; geophysics computing; learning (artificial intelligence); neural nets; pattern classification; probability; remote sensing; Gaussian mixture model; cloud classification; maximum likelihood learning; minimum classification error; probabilistic neural networks; satellite cloud data; satellite imagery; Clouds; Computer errors; Electronic mail; Maximum likelihood estimation; Neural networks; Neurons; Parameter estimation; Pattern recognition; Satellites; Training data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 1999. IJCNN '99. International Joint Conference on
Conference_Location :
Washington, DC
ISSN :
1098-7576
Print_ISBN :
0-7803-5529-6
Type :
conf
DOI :
10.1109/IJCNN.1999.830757
Filename :
830757
Link To Document :
بازگشت