DocumentCode :
1804601
Title :
Estimation and classification of fetal heart rate baselines using artificial neural networks
Author :
De Sá, J. P Marques ; Reis, L. Paulo ; Lau, J. Nuno ; Bernardes, Joao
Author_Institution :
Fac. de Engenharia, Porto Univ., Portugal
fYear :
1994
fDate :
25-28 Sept. 1994
Firstpage :
541
Lastpage :
544
Abstract :
FHR ("Fetal Heart Rate") signals analysis is an important diagnostic tool in the assessment of the fetus\´s well being. One of the most important FHR features is its baseline. Visual evaluation of FHR baseline reveals however a large inter and intraobserver variability. Here, a new FHR base line determination method using artificial neural networks (ANN) is presented. Two base line determination methods with multilayer perceptron ANNs (namely base line estimation and base line classification) are described and compared based on their practical application results.<>
Keywords :
cardiology; feature extraction; medical signal processing; multilayer perceptrons; base line determination methods; fetal heart rate baselines classification; fetal heart rate baselines estimation; fetus well being assessment; important diagnostic tool; interobserver variability; intraobserver variability; multilayer perceptron methods; Artificial neural networks; Cardiography; Fetal heart rate; Fetus; Histograms; Medical diagnostic imaging; Neural networks; Signal analysis; Signal processing; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computers in Cardiology 1994
Conference_Location :
Bethesda, MD, USA
Print_ISBN :
0-8186-6570-X
Type :
conf
DOI :
10.1109/CIC.1994.470135
Filename :
470135
Link To Document :
بازگشت