DocumentCode :
180635
Title :
Logarithmic regret bound over diffusion based distributed estimation
Author :
Sayin, Muhammed O. ; Denizcan Vanii, N. ; Kozat, Suleyman S.
Author_Institution :
Bilkent Univ., Ankara, Turkey
fYear :
2014
fDate :
4-9 May 2014
Firstpage :
8287
Lastpage :
8291
Abstract :
We provide a logarithmic upper-bound on the regret function of the diffusion implementation for the distributed estimation. For certain learning rates, the bound shows guaranteed performance convergence of the distributed least mean square (DLMS) algorithms to the performance of the best estimation generated with hindsight of spatial and temporal data. We use a new cost definition for distributed estimation based on the widely-used statistical performance measures and the corresponding global regret function. Then, for certain learning rates, we provide an upper-bound on the global regret function without any statistical assumptions.
Keywords :
least mean squares methods; parameter estimation; signal processing; spatial data structures; temporal databases; DLMS algorithms; diffusion implementation; distributed estimation; distributed least mean square; global regret function; logarithmic upper-bound; spatial data; temporal data; Algorithm design and analysis; Estimation; Parameter estimation; Performance analysis; Signal processing algorithms; Spatial databases; Vectors; Regret; diffusion; distributed; estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on
Conference_Location :
Florence
Type :
conf
DOI :
10.1109/ICASSP.2014.6855217
Filename :
6855217
Link To Document :
بازگشت