Title :
Using Qtag to Extract Dominant Public Opinion in Very Large-Scale Conversation
Author :
Lee, Sung Eob ; Chun, Taeksoo ; Han, Steve Sangki
Author_Institution :
Proactive Project Group, NHN, Seoul, South Korea
Abstract :
These days VLSC (very large-scale conversation) is a particular type of online conversation, that is large scale, public, text-based, many-to-many and persistent. The nature of VLSC allows the accumulation of thousands of conversation in a fraction of time, and it often grows out of userspsila readable capacity. Therefore, extracting dominant public opinion on VLSC is usually impossible without causing an information overload. In this paper, Qtag is proposed to improve the VLSC environment by extracting public opinion easily, enhancing the value of conversation, and increasing the participantspsila willingness to engage. A simulation which mimics reality is built to create a VLSC environment, and two sets of questionnaire are conducted to compare userspsila experiences before and after Qtag trial.
Keywords :
identification technology; information retrieval; text analysis; Qtag; dominant public opinion extraction; online conversation; text-based; very large-scale conversation; Atmosphere; Collaboration; Collaborative tools; Data mining; Graphical user interfaces; Large-scale systems; Prototypes; Tagging; Text analysis; Web and internet services; Collaborative Tagging; Interface; Public opinion; Qtag; Qualitative Tagging; VLSC;
Conference_Titel :
Computational Science and Engineering, 2009. CSE '09. International Conference on
Conference_Location :
Vancouver, BC
Print_ISBN :
978-1-4244-5334-4
Electronic_ISBN :
978-0-7695-3823-5
DOI :
10.1109/CSE.2009.453