Title :
Path Finding Methods for Linear Programming: Solving Linear Programs in Õ(vrank) Iterations and Faster Algorithms for Maximum Flow
Author :
Yin Tat Lee ; Sidford, Aaron
Author_Institution :
Dept. of Math., MIT, Cambridge, MA, USA
Abstract :
In this paper, we present a new algorithm for ´/ solving linear programs that requires only Õ(√rank(A)L) iterations where A is the constraint matrix of a linear program with m constraints, n variables, and bit complexity L. Each iteration of our method consists of solving Õ(1) linear systems and additional nearly linear time computation. Our method improves upon the previous best iteration bounds by factor Ω̃((m/rank (A)))1/4) of for methods with polynomial time computable iterations and by Ω̃((m/rank (A))1/2) for methods which solve at most Õ(1) linear systems in each iteration each achieved over 20 years ago. Applying our techniques to the linear program formulation of maximum flow yields an Õ(|E| √|V| log2 U) time algorithm for solving the maximum flow problem on directed graphs with |E| edges, |V| vertices, and capacity ratio U. This improves upon the previous fastest running time of O(|E| min{|E|1/2, |V|2/3} log (|V|2/|E|) log(U)) achieved over 15 years ago by Goldberg and Rao and improves upon the previous best running times for solving dense directed unit capacity graphs of Õ(|E| min{|E|1/2, |V|2/3}) achieved by Even and Tarjan over 35 years ago and a running time of Õ(|E|10/7) achieved recently by Madry.
Keywords :
computational complexity; directed graphs; linear programming; linear systems; matrix algebra; bit complexity; constraint matrix; dense directed unit capacity graphs; linear program formulation; linear systems; linear time computation; path-finding methods; polynomial time; Approximation methods; Convergence; Laplace equations; Linear programming; Linear systems; Polynomials; Standards; interior point; linear program; maximum flow;
Conference_Titel :
Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on
Conference_Location :
Philadelphia, PA
DOI :
10.1109/FOCS.2014.52