DocumentCode :
1808870
Title :
A multiplier-less 1-D and 2-D fast Fourier transform-like transformation using sum-of-powers-of-two (SOPOT) coefficients
Author :
Chan, S.C. ; Yiu, P.M.
Author_Institution :
Dept. of Electr. & Electron. Eng., Hong Kong Univ., China
Volume :
4
fYear :
2002
fDate :
2002
Abstract :
This paper proposes a new multiplier-less approximation of the 1D discrete Fourier transform (DFT) called the multiplierless fast Fourier transform-like (ML-FFT) transformation. It parameterizes the twiddle factors in conventional radix-2n or split-radix FFT algorithms as certain rotation-like matrices and approximates the associated parameters using the sum-of-powers-of-two (SOPOT) or canonical signed digits (CSD) representations. The ML-FFT converges to the DFT when the number of SOPOT terms used increases and has an arithmetic complexity of O(Nlog2 N) additions, where N=2m is the transform length. Design results show that the ML-FFT offers flexible tradeoff between arithmetic complexity and numerical accuracy in approximating the DFT. Using the polynomial transformation, similar multiplier-less approximation of 2D FFT is also obtained.
Keywords :
computational complexity; convergence of numerical methods; digital arithmetic; digital signal processing chips; discrete Fourier transforms; fast Fourier transforms; signal processing; 1D discrete Fourier transform; 2D FFT; DFT; ML-FFT convergence; SOPOT coefficients; arithmetic complexity; canonical signed digits representations; multiplier-less 1D fast Fourier transform-like transformation; multiplier-less 2D fast Fourier transform-like transformation; multiplier-less approximation; numerical accuracy; polynomial transformation; radix-2n FFT algorithms; rotation-like matrices; split-radix FFT algorithms; sum-of-powers-of-two coefficients; transform length; twiddle factor parameterization; Arithmetic; Digital signal processing; Discrete Fourier transforms; Discrete cosine transforms; Discrete transforms; Dynamic range; Fast Fourier transforms; Polynomials; Signal processing algorithms; Very large scale integration;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on
Print_ISBN :
0-7803-7448-7
Type :
conf
DOI :
10.1109/ISCAS.2002.1010567
Filename :
1010567
Link To Document :
بازگشت