DocumentCode :
1810565
Title :
PoHMM-based human action recognition
Author :
Mendoza, M. Ángeles ; de la Blanca, Nicolás Pérez ; Marín-Jiménez, Manuel J.
Author_Institution :
Dept. of Comput. Sci. & A.I., Univ. of Granada, Granada
fYear :
2009
fDate :
6-8 May 2009
Firstpage :
85
Lastpage :
88
Abstract :
In this paper we approach the human action recognition task using the Product of Hidden Markov Models (PoHMM). This approach allow us to get large state-space models from the normalized product of several simple HMMs. We compare this mixed graphical model with other directed multi-chain models like Coupled Hidden Markov Model (CHMM) or Factorial Hidden Markov Model (FHMM), so as with Conditional Random Field (CRF), a particular case of undirected graphical models. Our results show that PoHMM outperforms the classification score of these other space-state models on the KTH database using optical flow features.
Keywords :
gesture recognition; hidden Markov models; image motion analysis; conditional random field; coupled hidden Markov model; factorial hidden Markov model; human action recognition; optical flow features; product of hidden Markov models; Bayesian methods; Computer science; Graphical models; Hidden Markov models; Humans; Image motion analysis; Parameter estimation; Spatial databases; State estimation; Technological innovation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Analysis for Multimedia Interactive Services, 2009. WIAMIS '09. 10th Workshop on
Conference_Location :
London
Print_ISBN :
978-1-4244-3609-5
Electronic_ISBN :
978-1-4244-3610-1
Type :
conf
DOI :
10.1109/WIAMIS.2009.5031438
Filename :
5031438
Link To Document :
بازگشت