DocumentCode :
1814344
Title :
On Kalman-Yakubovich-Popov lemma for stabilizable systems
Author :
Collado, Joaquin ; Lozano, Rogelio ; Johansson, Rolf
Author_Institution :
Fac. de Ingenieria Mecanica y Electr., Univ. Autonoma de Nuevo Leon, Mexico
Volume :
3
fYear :
1999
fDate :
1999
Firstpage :
2733
Abstract :
The Kalman-Yakubovich-Popov (KYP) lemma has been a cornerstone in system theory and network analysis and synthesis. It relates an analytic property of a square transfer matrix in the frequency domain to a set of algebraic equations involving parameters of a minimal realization in the time domain. This note proves that the KYP lemma is also valid for realizations which are stabilizable and observable
Keywords :
equations; minimisation; network analysis; network synthesis; observability; realisation theory; stability; system theory; time-frequency analysis; transfer function matrices; Kalman-Yakubovich-Popov lemma; algebraic equations; frequency domain; minimal realization; network analysis; network synthesis; observability; square transfer matrix; stabilizable systems; system theory; time domain; Automatic control; Bismuth; Control system synthesis; Control systems; Electronic mail; Equations; Frequency domain analysis; Linear algebra; Network synthesis; Time domain analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1999. Proceedings of the 38th IEEE Conference on
Conference_Location :
Phoenix, AZ
ISSN :
0191-2216
Print_ISBN :
0-7803-5250-5
Type :
conf
DOI :
10.1109/CDC.1999.831343
Filename :
831343
Link To Document :
بازگشت