DocumentCode :
1817561
Title :
Bayesian non-parametric simulation of hazard functions
Author :
Belyi, Dmitriy ; Popova, Elmira ; Morton, David ; Damien, Paul
Author_Institution :
Oper. Res. & Ind. Eng., Univ. of Texas at Austin, Austin, TX, USA
fYear :
2009
fDate :
13-16 Dec. 2009
Firstpage :
475
Lastpage :
482
Abstract :
In Bayesian non-parametric statistics, the extended gamma process can be used to model the class of monotonic hazard functions. However, numerical evaluations of the posterior process are very difficult to compute for realistic sample sizes. To overcome this, we use Monte Carlo methods introduced by Laud, Smith, and Damien (1996) to simulate from the posterior process. We show how these methods can be used to approximate the increasing failure rate of an item, given observed failures and censored times. We then use the results to compute the optimal maintenance schedule under a specified maintenance policy.
Keywords :
Bayes methods; Monte Carlo methods; failure analysis; hazards; reliability theory; Bayesian nonparametric simulation; Monte Carlo methods; extended gamma process; item failure rate; maintenance policy; monotonic hazard functions; posterior process; Bayesian methods; Computational modeling; Distributed computing; Failure analysis; Hazards; Industrial engineering; Operations research; State-space methods; Statistics; Weibull distribution;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Simulation Conference (WSC), Proceedings of the 2009 Winter
Conference_Location :
Austin, TX
Print_ISBN :
978-1-4244-5770-0
Type :
conf
DOI :
10.1109/WSC.2009.5429359
Filename :
5429359
Link To Document :
بازگشت