DocumentCode :
1817947
Title :
Lesions detection on 3D brain MRI using trimmmed likelihood estimator and probabilistic atlas
Author :
Bricq, S. ; Collet, Ch ; Armspach, J.P.
Author_Institution :
Strasbourg Univ. LSIIT, Strasbourg
fYear :
2008
fDate :
14-17 May 2008
Firstpage :
93
Lastpage :
96
Abstract :
this paper, we present a new automatic robust algorithm to segment multimodal brain MR images with Multiple Sclerosis (MS) lesions. The method performs tissue classification using a Hidden Markov Chain (HMC) model and detects MS lesions as outliers to the model. For this aim, we use the Trimmed Likelihood Estimator (TLE) to extract outliers. Furthermore, neighborhood information is included using the HMC model and we propose to incorporate a priori information brought by a probabilistic atlas. Tests on Brainweb images with MS lesions have been carried out to validate this approach.
Keywords :
biomedical MRI; brain; diseases; hidden Markov models; image segmentation; medical image processing; 3D brain MRI; a priori information; hidden Markov chain model; multimodal brain MR images; multiple sclerosis lesions; probabilistic atlas; segmentation; tissue classification; trimmmed likelihood estimator; Brain modeling; Central nervous system; Data mining; Hidden Markov models; Image segmentation; Lesions; Magnetic resonance imaging; Multiple sclerosis; Robustness; Testing; Hidden Markov models; Image segmentation; Magnetic Resonance Imaging; robustness;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th IEEE International Symposium on
Conference_Location :
Paris
Print_ISBN :
978-1-4244-2002-5
Electronic_ISBN :
978-1-4244-2003-2
Type :
conf
DOI :
10.1109/ISBI.2008.4540940
Filename :
4540940
Link To Document :
بازگشت