DocumentCode :
1824232
Title :
Interrogation of damage-state in leadfree electronics under sequential exposure to thermal aging and thermal cycling
Author :
Lall, Pradeep ; Vaidya, Rahul ; More, Vikrant ; Goebel, Kai
Author_Institution :
Dept. of Mech. Eng., Auburn Univ., Auburn, AL, USA
fYear :
2011
fDate :
11-16 Sept. 2011
Firstpage :
1
Lastpage :
17
Abstract :
Electronic systems are often stored for long periods prior to deployment in the intended environment. Aging has been previously shown to effect the reliability and constitutive behavior of second-level leadfree interconnects. Deployed systems may be subjected to cyclic thermo-mechanical loads subsequent to deployment. Prognostication of accrued damage and assessment of residual life is extremely critical for ultra-high reliability systems in which the cost of failure is too high. The presented methodology uses leading indicators of failure based on microstructural evolution of damage to identify impending failure in electronic systems subjected to sequential stresses of thermal aging and thermal cycling. The methodology has been demonstrated on area-array ball-grid array test assemblies with Sn3 Ag0.5Cu interconnects subjected to thermal aging at 125°C and thermal cycling from -55 to 125°C for various lengths of time and cycles. Damage equivalency methodologies have been developed to map damage accrued in thermal aging to the reduction in thermo-mechanical cyclic life based on damage proxies. Assemblies have been prognosticated to assess the error with interrogation of system state and assessment of residual life. Prognostic metrics including α-λ metric, sample standard deviation, mean square error, mean absolute percentage error, average bias, relative accuracy, and cumulative relative accuracy have been used to compare the performance of the damage proxies.
Keywords :
ageing; ball grid arrays; copper alloys; interconnections; metallisation; reliability; silver alloys; tin alloys; SnAgCu; area array ball grid array test assembly; cyclic thermo-mechanical load; damage equivalency methodology; damage state; leadfree electronics; microstructural damage evolution; prognostication of; residual life; temperature -55 C to 125 C; thermal aging; thermal cycling; ultrahigh reliability systems; Aerospace electronics; Aging; Assembly; Intermetallic; Reliability; Stress; Thermal stresses;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD), 2011 33rd
Conference_Location :
Anaheim, CA
ISSN :
Pending
Electronic_ISBN :
Pending
Type :
conf
Filename :
6045598
Link To Document :
بازگشت