DocumentCode :
1824424
Title :
Data Intensive Query Processing for Large RDF Graphs Using Cloud Computing Tools
Author :
Husain, Mohammad Farhan ; Khan, Latifur ; Kantarcioglu, Murat ; Thuraisingham, Bhavani
Author_Institution :
Dept. of Comput. Sci., Univ. of Texas at Dallas, Richardson, TX, USA
fYear :
2010
fDate :
5-10 July 2010
Firstpage :
1
Lastpage :
10
Abstract :
Cloud computing is the newest paradigm in the IT world and hence the focus of new research. Companies hosting cloud computing services face the challenge of handling data intensive applications. Semantic web technologies can be an ideal candidate to be used together with cloud computing tools to provide a solution. These technologies have been standardized by the World Wide Web Consortium (W3C). One such standard is the Resource Description Framework (RDF). With the explosion of semantic web technologies, large RDF graphs are common place. Current frameworks do not scale for large RDF graphs. In this paper, we describe a framework that we built using Hadoop, a popular open source framework for Cloud Computing, to store and retrieve large numbers of RDF triples. We describe a scheme to store RDF data in Hadoop Distributed File System. We present an algorithm to generate the best possible query plan to answer a SPARQL Protocol and RDF Query Language (SPARQL) query based on a cost model. We use Hadoop´s MapReduce framework to answer the queries. Our results show that we can store large RDF graphs in Hadoop clusters built with cheap commodity class hardware. Furthermore, we show that our framework is scalable and efficient and can easily handle billions of RDF triples, unlike traditional approaches.
Keywords :
distributed processing; query languages; query processing; semantic Web; RDF graphs; SPARQL protocol; World Wide Web consortium; cloud computing tools; data intensive query processing; hadoop distributed file system; resource description framework; semantic Web technologies; Cloud computing; Data mining; Data models; Distributed databases; Ontologies; Resource description framework; Cloud; Hadoop; RDF; Semantic Web;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference on
Conference_Location :
Miami, FL
Print_ISBN :
978-1-4244-8207-8
Electronic_ISBN :
978-0-7695-4130-3
Type :
conf
DOI :
10.1109/CLOUD.2010.36
Filename :
5558142
Link To Document :
بازگشت