DocumentCode :
1826507
Title :
Blind denoising using a wavelet coder
Author :
Raffy, Philippe ; Najmi, Amir ; Gray, Robert M.
Author_Institution :
Dept. of Electr. Eng., Stanford Univ., CA, USA
Volume :
2
fYear :
1999
fDate :
24-27 Oct. 1999
Firstpage :
1282
Abstract :
We present a method based upon data compression, for denoising an image corrupted by white Gaussian noise. Our work differs from that of others not only in its statistical/information theoretic basis but also in that our approach extends to denoising problems where the noise variance is unknown.
Keywords :
Gaussian noise; data compression; image coding; information theory; rate distortion theory; statistical analysis; transform coding; wavelet transforms; white noise; MSE; blind denoising; data compression; image coding; information theory; noise corrupted image; noise variance; parametric model; rate distortion; stack-run coding; statistics; wavelet coder; white Gaussian noise; Bayesian methods; Distortion measurement; Information systems; Laboratories; Maximum a posteriori estimation; Maximum likelihood estimation; Noise reduction; Parametric statistics; Q measurement; White noise;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signals, Systems, and Computers, 1999. Conference Record of the Thirty-Third Asilomar Conference on
Conference_Location :
Pacific Grove, CA, USA
ISSN :
1058-6393
Print_ISBN :
0-7803-5700-0
Type :
conf
DOI :
10.1109/ACSSC.1999.831913
Filename :
831913
Link To Document :
بازگشت