Title :
Improvement of Automated Detection Method of Lacunar Infarcts in Brain MR Images
Author :
Uchiyama, Yusuke ; Yokoyama, Ryohei ; Ando, Hideki ; Asano, Takashi ; Kato, Haruhisa ; Yamakawa, Hiroshi ; Yamakawa, Hiroshi ; Hara, Tenshi ; Iwama, Tsukasa ; Hoshi, Hidekazu ; Fujita, Hideaki
Author_Institution :
Gifu Univ., Gifu
Abstract :
The detection of asymptomatic lacunar infarcts on magnetic resonance (MR) images are important tasks for radiologists to ensure the prevention of severe cerebral infarction. However, their accurate identification is often difficult task. Therefore, the purpose of this study is to develop a computer- aided diagnosis scheme for the detection of lacunar infarcts. Our database consisted of 1,143 T1- and 1,143 T2-weighted images obtained from 132 patients. We first segmented the cerebral region in the Tl- weighted image by using a region growing technique. For identifying the initial lacunar infarcts candidates, white top-hat transform and multiple-phase binarization were then applied to the T2- weighted image. For eliminating false positives (FPs), we determined 12 features, i.e., the locations x and y, density differences in the Tl- and T2-weighted images, nodular components (NC), and nodular & linear components (NLC) from a scale 1 to 4. The NCs and NLCs were obtained using filter bank technique. The rule-based scheme and a neural network with 12 features were employed as the first step for eliminating FPs. The modular classifier was then used for eliminating three typical sources of FPs. As a result, the sensitivity of the detection of lacunar infarcts was 96.8% with 0.30 FP per image. Our computerized scheme would assist radiologists in identifying lacunar infarcts on MR images.
Keywords :
biomedical MRI; blood vessels; brain; diseases; image classification; image segmentation; medical image processing; neurophysiology; 1,143 T1- weighted images; 1,143 T2-weighted images; asymptomatic lacunar infarcts detection; brain MR images; cerebral region segmentation; cerebrovascular diseases; computer- aided diagnosis scheme; filter bank technique; lacunar infarcts automated detection method; magnetic resonance images; modular classifier; multiple-phase binarization; nodular components; nodular linear components; rule-based scheme; severe cerebral infarction prevention; white top-hat transform; Aneurysm; Biomedical imaging; Diseases; Hospitals; Image databases; Magnetic resonance; Magnetic resonance imaging; Medical diagnostic imaging; Spatial resolution; Tellurium; Computer-Aided Diagnosis; Lacunar infarcts; Magnetic resonance imaging (MRI); Modular classifier; Adult; Aged; Algorithms; Artificial Intelligence; Brain; Brain Infarction; Female; Humans; Image Enhancement; Image Interpretation, Computer-Assisted; Magnetic Resonance Imaging; Male; Middle Aged; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity;
Conference_Titel :
Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE
Conference_Location :
Lyon
Print_ISBN :
978-1-4244-0787-3
DOI :
10.1109/IEMBS.2007.4352611