DocumentCode :
1830044
Title :
Modeling of the DCT coefficients of images
Author :
Bhuiyan, M.I.H. ; Ahmad, M. Omair ; Swamy, M.N.S.
Author_Institution :
Dept. of Electr. & Comput. Eng., Concordia Univ., Montreal, QC
fYear :
2008
fDate :
18-21 May 2008
Firstpage :
272
Lastpage :
275
Abstract :
In this paper, the symmetric normal inverse Gaussian (SNIG) probability density function (PDF) is proposed as a highly suitable prior for modelling the DCT coefficients of natural images. A new method, based on minimizing the Kullback-Leibler divergence between the proposed prior and the empirical PDF extracted from image data, is proposed to estimate the SNIG parameters. The efficacy of the proposed parameter estimation technique is tested using Monte-Carlo simulations. It is shown that the SNIG PDF is a more effective prior as compared to the generalized Gaussian (GG), alpha-stable, and Laplacian PDFs for modelling the full-frame DCT coefficients of natural images. For the block-DCT coefficients, the SNIG PDF is shown to be better than the GG and Laplacian PDFs, and comparable to the instable one, while incurring much less complexity for parameter estimation.
Keywords :
Gaussian processes; Monte Carlo methods; discrete cosine transforms; image processing; parameter estimation; DCT coefficients; Kullback-Leibler divergence; Laplacian probability density function; Monte-Carlo simulations; natural images; parameter estimation; symmetric normal inverse Gaussian; Digital images; Discrete cosine transforms; Image coding; Image processing; Image storage; Laplace equations; Parameter estimation; Probability density function; Robustness; Watermarking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on
Conference_Location :
Seattle, WA
Print_ISBN :
978-1-4244-1683-7
Electronic_ISBN :
978-1-4244-1684-4
Type :
conf
DOI :
10.1109/ISCAS.2008.4541407
Filename :
4541407
Link To Document :
بازگشت