DocumentCode :
183222
Title :
Cognitive Inspired Model to Generate Duplicated Static Signature Images
Author :
Diaz-Cabrera, Moises ; Ferrer, Miguel A. ; Morales, Aythami
Author_Institution :
Inst. Univ. para el Desarrollo Tecnol. y la Innovacion en Comun., Univ. de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
fYear :
2014
fDate :
1-4 Sept. 2014
Firstpage :
61
Lastpage :
66
Abstract :
The handwriting signature is one of the most popular behavioral biometric traits for person recognition. Such recognition systems capture the personal signing behaviour and its variability based on a limited number of enrolled signatures. In this paper a cognitive inspired model based on motor equivalence theory is developed to duplicate off-line signatures from one real on-line seed. This model achieves duplicated signatures with a natural variability. It is validated with an off-line signature verifier based on texture features and a SVM classifier. The results manifest the complementarity of the duplicated signatures and the utility of the model.
Keywords :
handwriting recognition; object recognition; support vector machines; SVM classifier; behavioral biometric traits; cognitive inspired model; duplicated signatures; duplicated static signature images; handwriting signature; motor equivalence theory; off-line signature verifier; person recognition; personal signing behaviour; texture features; Databases; Forgery; Hidden Markov models; Ink; Training; Trajectory; Biometric recognition; Duplicated samples; Signature synthesis; Signature verification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Frontiers in Handwriting Recognition (ICFHR), 2014 14th International Conference on
Conference_Location :
Heraklion
ISSN :
2167-6445
Print_ISBN :
978-1-4799-4335-7
Type :
conf
DOI :
10.1109/ICFHR.2014.18
Filename :
6980997
Link To Document :
بازگشت