DocumentCode :
1832567
Title :
Efficient matrix chain ordering in polylog time
Author :
Bradford, Phillip G. ; Rawlins, Gregory J E ; Shannon, Gregory E.
Author_Institution :
Dept. of Comput. Sci., Indiana Univ., Bloomington, IN, USA
fYear :
1994
fDate :
26-29 Apr 1994
Firstpage :
234
Lastpage :
241
Abstract :
This paper gives an O(lg3 n)-time and n/lg n processor algorithm for solving the matrix chain ordering problem and for finding optimal triangulations of a convex polygon on the common CRCW PRAM model. This algorithm works by finding shortest paths in special digraphs modeling dynamic programming tables. Also, a key part of the algorithm is improved by computing row minima of a totally monotone matrix, this lets the algorithm run in O(lg2 n) time with n processors on the EREW PRAM or even O(lg2 n lg lg n) time with n/lg lg n processors on the CRCW PRAM
Keywords :
computational complexity; directed graphs; dynamic programming; matrix algebra; parallel algorithms; CRCW PRAM model; convex polygon; dynamic programming tables; matrix chain ordering; optimal triangulations; polylog time; shortest paths; time comlexity; Computer science; Costing; Dynamic programming; Heuristic algorithms; Matrix decomposition; Parallel algorithms; Phase change random access memory; Shortest path problem; Tree graphs;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Parallel Processing Symposium, 1994. Proceedings., Eighth International
Conference_Location :
Cancun
Print_ISBN :
0-8186-5602-6
Type :
conf
DOI :
10.1109/IPPS.1994.288295
Filename :
288295
Link To Document :
بازگشت