Title :
Constrained AdaBoost for Totally-Ordered Global Features
Author :
Ogata, Ryota ; Mori, Marco ; Frinken, Volkmar ; Uchida, Seiichi
Author_Institution :
Fac. of Inf. Sci. & Electr. Eng., Kyushu Univ., Fukuoka, Japan
Abstract :
This paper proposes a constrained AdaBoost algorithm for utilizing global features in a dynamic time warping (DTW) framework. Global features are defined as a spatial relationship between temporally-distant points of a temporal pattern and are useful to represent global structure of the pattern. An example is the spatial relationship between the first and the last points of a handwritten pattern of the digit "0". Those temporally-distant points should be spatially close enough to form a closed circle, whereas those points of "6" should be distant enough. For a temporal pattern of an N-point sequence, it is possible to have N(N -- 1)/2 global features. One problem of using the global features is that they are not ordered as a one dimensional sequence any more. Consequently, it is impossible to use them in a left-to-right Markovian model, such as DTW and HMM. The proposed constrained AdaBoost algorithm can select a totally-ordered subset from the set of N(N -- 1)/2 global features. Since the totally-ordered features can be arranged as a one-dimensional sequence, they can be incorporated into a DTW framework for compensating nonlinear temporal fluctuation. Since the selection is governed by the AdaBoost framework, the selected features can retain discriminative power.
Keywords :
hidden Markov models; learning (artificial intelligence); 1D sequence; AdaBoost framework; DTW framework; HMM; constrained AdaBoost algorithm; dynamic time warping framework; global structure; handwritten pattern; left-to-right Markovian model; nonlinear temporal fluctuation; spatial relationship; temporal pattern; temporally-distant points; totally-ordered features; totally-ordered global features; totally-ordered subset; Character recognition; Feature extraction; Hidden Markov models; Markov processes; Training; Vectors; Writing; AdaBoost; Feature selection; Global feature; Handwriting; Non-Markovian nature;
Conference_Titel :
Frontiers in Handwriting Recognition (ICFHR), 2014 14th International Conference on
Conference_Location :
Heraklion
Print_ISBN :
978-1-4799-4335-7
DOI :
10.1109/ICFHR.2014.72