DocumentCode :
1834777
Title :
Adjustable solutions of doubly coprime matrix fraction descriptions
Author :
Chen, Hung-Chou ; Chang, Fan-Ren
Author_Institution :
Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan
fYear :
1994
fDate :
7-9 Mar 1994
Firstpage :
489
Lastpage :
495
Abstract :
Using the concept of infinite eigenstructure assignment in generalized systems, explicit formulas for calculating the polynomial generalized Bezout identity is proposed. The degree of the polynomial matrix is directly related to the length of the longest infinite eigenvector chain of the associated generalized state-space representation. Hence the method of infinite eigenstructure assignment can be used to find adjustable-degree solutions of the doubly coprime matrix fraction descriptions
Keywords :
eigenvalues and eigenfunctions; linear systems; matrix algebra; polynomials; state-space methods; doubly coprime matrix fraction descriptions; generalized state space representation; infinite eigenstructure assignment; infinite eigenvector chain; polynomial generalized Bezout identity; polynomial matrix; Artificial intelligence; Control systems; Ear; Eigenvalues and eigenfunctions; Equations; Frequency domain analysis; Polynomials; State feedback; State-space methods;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer-Aided Control System Design, 1994. Proceedings., IEEE/IFAC Joint Symposium on
Conference_Location :
Tucson, AZ
Print_ISBN :
0-7803-1800-5
Type :
conf
DOI :
10.1109/CACSD.1994.288887
Filename :
288887
Link To Document :
بازگشت