DocumentCode :
183592
Title :
Local E-optimality conditions for trajectory design to estimate parameters in nonlinear systems
Author :
Wilson, Andrew D. ; Murphey, Todd D.
Author_Institution :
Dept. of Mech. Eng., Northwestern Univ., Evanston, IL, USA
fYear :
2014
fDate :
4-6 June 2014
Firstpage :
443
Lastpage :
450
Abstract :
This paper develops an optimization method to synthesize trajectories for use in the identification of system parameters. Using widely studied techniques to compute Fisher information based on observations of nonlinear dynamical systems, an infinite-dimensional, projection-based optimization algorithm is formulated to optimize the system trajectory using eigenvalues of the Fisher information matrix as the cost metric. An example of a cart-pendulum simulation demonstrates a significant increase in the Fisher information using the optimized trajectory with decreased parameter variances shown through Monte-Carlo tests and computation of the Cramer-Rao lower bound.
Keywords :
Monte Carlo methods; eigenvalues and eigenfunctions; matrix algebra; multidimensional systems; nonlinear control systems; nonlinear dynamical systems; optimisation; parameter estimation; Cramer-Rao lower bound computation; Fisher information matrix eigenvalues; Monte-Carlo tests; cart-pendulum simulation; cost metric; infinite-dimensional optimization algorithm; local e-optimality conditions; nonlinear dynamical systems; nonlinear systems; optimization method; parameter estimation; projection-based optimization algorithm; system parameter identification; system trajectory optimization; trajectory design; Cost function; Eigenvalues and eigenfunctions; Equations; Heuristic algorithms; Mathematical model; Trajectory; Estimation; Nonlinear systems; Optimal control;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference (ACC), 2014
Conference_Location :
Portland, OR
ISSN :
0743-1619
Print_ISBN :
978-1-4799-3272-6
Type :
conf
DOI :
10.1109/ACC.2014.6858649
Filename :
6858649
Link To Document :
بازگشت