DocumentCode :
1838597
Title :
8-Bit gray-scale DTCNN implementation over an FPGA for Robot Guiding algorithm
Author :
Albo-Canals, J. ; Villasante-Bembibre, J.A. ; Riera-Babures, J. ; Vilasis-Cardona, X.
Author_Institution :
LIFAELS, La Salle - Univ. Ramon Llull, Barcelona, Spain
fYear :
2010
fDate :
3-5 Feb. 2010
Firstpage :
1
Lastpage :
2
Abstract :
This paper presents the application of an 8-bit Field Programmable Gate Array (FPGA) implementation of a Discrete Time Cellular Neural Network (DTCNN) suitable for small image gray-scale pre-processing (simple operations with high computational burden). It uses Split & Shift techniques to have a 12 ?? 12 grid. Reduced grid is necessary because of windowing process is added to process bigger images (NIOSII and peripherical elements occupation consume 4000 logic elements (LE) approximately). The implementation over the FPGA uses I2C interfece to communicate with Lego Mindstorm Device.
Keywords :
cellular neural nets; discrete time systems; field programmable gate arrays; image processing; logic design; robot dynamics; robot vision; discrete time cellular neural network; field programmable gate array; image gray scale preprocessing; image processing; robot guiding algorithm; split and shift techniques; windowing process; Application software; Cameras; Cellular networks; Field programmable gate arrays; Gray-scale; Hardware; Kernel; Linux; Multitasking; Robot vision systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Cellular Nanoscale Networks and Their Applications (CNNA), 2010 12th International Workshop on
Conference_Location :
Berkeley, CA
Print_ISBN :
978-1-4244-6679-5
Type :
conf
DOI :
10.1109/CNNA.2010.5430336
Filename :
5430336
Link To Document :
بازگشت