DocumentCode :
184108
Title :
Collaborative system identification via parameter consensus
Author :
Papusha, Ivan ; Lavretsky, Eugene ; Murray, Richard M.
Author_Institution :
Control & Dynamical Syst. Dept., California Inst. of Technol., Pasadena, CA, USA
fYear :
2014
fDate :
4-6 June 2014
Firstpage :
13
Lastpage :
19
Abstract :
Classical schemes in system identification and adaptive control often rely on persistence of excitation to guarantee parameter convergence, which may be difficult to achieve with a single agent and a single input. Inspired by consensus systems, we extend classical parameter adaptation to the multi agent setting by combining an adaptive gradient law with consensus dynamics. The gradient law represents the main learning signal, while consensus dynamics attract each agent´s parameter estimates toward those of its neighbors. We show that the resulting decentralized online parameter estimator can be used to identify the true parameters of all agents, even if no single agent employs a persistently exciting input.
Keywords :
adaptive control; convergence; decentralised control; gradient methods; learning systems; multi-robot systems; parameter estimation; adaptive control; adaptive gradient law; collaborative system identification; consensus dynamics; consensus systems; decentralized online parameter estimator; learning signal; multiagent setting; parameter adaptation; parameter consensus; parameter convergence; parameter identification; Artificial neural networks; Collaboration; Convergence; Eigenvalues and eigenfunctions; Noise; Symmetric matrices; Vectors; Adaptive systems; Identification; Networked control systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference (ACC), 2014
Conference_Location :
Portland, OR
ISSN :
0743-1619
Print_ISBN :
978-1-4799-3272-6
Type :
conf
DOI :
10.1109/ACC.2014.6858938
Filename :
6858938
Link To Document :
بازگشت