DocumentCode :
1842869
Title :
Sliding mode backpropagation: control theory applied to neural network learning
Author :
Parma, G.G. ; Menezes, B.R. ; Braga, A.P.
Author_Institution :
Dept. de Engenharia Eletronica, Univ. Fed. de Minas Gerais, Belo Horizonte, Brazil
Volume :
3
fYear :
1999
fDate :
1999
Firstpage :
1774
Abstract :
This paper shows two different methodologies, both based on sliding mode control to train multilayer perceptron. These two methods are compared with standard back propagation, momentum and RPROP algorithms. The results show that the use of this control theory can reduce the time to train multilayer perceptron and also provide an interesting tool to analyze the limits for the parameters involved in the algorithm
Keywords :
backpropagation; multilayer perceptrons; variable structure systems; RPROP algorithms; back propagation; control theory; momentum algorithm; multilayer perceptron training; neural network learning; sliding mode backpropagation; Backpropagation algorithms; Control systems; Control theory; Error correction; Multilayer perceptrons; Neural networks; Optimization methods; Sliding mode control; Stability; Variable structure systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 1999. IJCNN '99. International Joint Conference on
Conference_Location :
Washington, DC
ISSN :
1098-7576
Print_ISBN :
0-7803-5529-6
Type :
conf
DOI :
10.1109/IJCNN.1999.832646
Filename :
832646
Link To Document :
بازگشت