DocumentCode :
1844937
Title :
Nanoindentation response and microstructure of single-crystal silicon under different loads
Author :
Lee, Woei-Shyan ; Chen, Tao-Hsing ; Chang, Shuo-Ling
Author_Institution :
Dept. of Mech. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan
fYear :
2009
fDate :
18-21 Oct. 2009
Firstpage :
164
Lastpage :
167
Abstract :
Nanoindentation tests are performed on single-crystal silicon wafers using a Berkovich indenter and maximum indentation loads of 30 mN, 40 mN, and 70 mN, respectively. The microstructural evolutions of the indented specimens are examined using transmission electron microscopy and selected area diffraction techniques. The results show that the unloading curve of the specimen indented to a maximum load of 30 mN has a smooth profile, whereas those of the specimens indented to 40 mN or 70 mN have a pop-out feature. The hardness and Young´s modulus of the silicon specimens reduce with an increasing indentation load, and have values of 15.8 GPa and 182 GPa, respectively, under the highest indentation load of 70 mN. A completely amorphous phase is induced within the indentation zone in the specimen indented to a maximum load of 30 mN, whereas a mixed structure comprising amorphous phase and nanocrystalline phase is found in the indentation zones in the specimens loaded to 40 mN and 70 mN, respectively.
Keywords :
Young´s modulus; crystal microstructure; elemental semiconductors; hardness; nanoindentation; silicon; transmission electron microscopy; Berkovich indenter; Si; Young´s modulus; hardness; microstructural evolutions; nanoindentation; selected area diffraction; single-crystal silicon wafers; transmission electron microscopy; Manganese; Load; Microstructural evolution; Nanoindentation; Silicon;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Nano/Molecular Medicine and Engineering (NANOMED), 2009 IEEE International Conference on
Conference_Location :
Tainan
Print_ISBN :
978-1-4244-5528-7
Type :
conf
DOI :
10.1109/NANOMED.2009.5559094
Filename :
5559094
Link To Document :
بازگشت