DocumentCode :
1845047
Title :
Bayesian estimation and detection of shot noise processes using reversible jumps
Author :
Andrieu, Christophe ; Duvaut, Patrick
Author_Institution :
ENSEA-ETIS Groupe Signal, Cergy, France
Volume :
5
fYear :
1997
fDate :
21-24 Apr 1997
Firstpage :
3681
Abstract :
We propose an original algorithm for the Bayesian joint estimation and detection of shot noise processes. The solution we propose relies on Markov chain Monte Carlo methods and provides the a posteriori probability density of the unknown parameters conditionally to the observations. The solution we propose provides many degrees of freedom for the inclusion of any a priori knowledge
Keywords :
Bayes methods; Markov processes; Monte Carlo methods; parameter estimation; probability; shot noise; signal detection; Bayesian detection; Bayesian estimation; Markov chain Monte Carlo methods; a posteriori probability density; algorithm; parameter estimation; reversible jumps; shot noise processes; Bayesian methods; Convergence; Event detection; Frequency; Gunshot detection systems; Monte Carlo methods; Physics; Proposals; Statistics; Stochastic resonance;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference on
Conference_Location :
Munich
ISSN :
1520-6149
Print_ISBN :
0-8186-7919-0
Type :
conf
DOI :
10.1109/ICASSP.1997.604665
Filename :
604665
Link To Document :
بازگشت