DocumentCode :
1846867
Title :
Development of thermal solutions for high performance laptop computers
Author :
Zhang, H.Y. ; Pinjala, D. ; Navas, O.K. ; Iyer, M.K. ; Chan, P.K. ; Liu, X.P. ; Hayashi, H. ; Han, J.B.
Author_Institution :
Inst. of Microelectron., Singapore, Singapore
fYear :
2002
fDate :
2002
Firstpage :
433
Lastpage :
440
Abstract :
In this research project, advanced thermal solutions for high performance laptop computer have been developed. This development involves design and implementation of a heat sink assembly, application of a heat pipe and thermal evaluation by modeling and measurement. The heat sink assembly has been designed and the thermal performance has been examined by measurements. A heat pipe assembly with two heat spreaders has been designed as the heat transport medium from microprocessor to the heat sink. In the system modeling, a compact model for the flip chip BGA package has been developed. Implementation of the compact model for the packages in the system modeling greatly reduces the grid size and thus makes the system simulation feasible. System measurements are performed with thermal solutions. Measurement results show that present thermal solutions are able to dissipate a power of 25 to 30 W from the microprocessor. The predicted junction temperatures by system simulation are compared with measurements and an agreement within 4% has been attained. Parametric studies have been conducted with the validated system level model.
Keywords :
ball grid arrays; chip scale packaging; error analysis; flip-chip devices; heat sinks; microprocessor chips; numerical analysis; thermal management (packaging); thermal resistance; 25 to 30 W; 25W to 30W; heat pipe; heat sink; laptop computer; system modeling; thermal evaluation; thermal solutions; Application software; Assembly; Flip chip; Heat sinks; High performance computing; Microprocessors; Packaging; Portable computers; Power system modeling; Semiconductor device measurement;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Thermal and Thermomechanical Phenomena in Electronic Systems, 2002. ITHERM 2002. The Eighth Intersociety Conference on
ISSN :
1089-9870
Print_ISBN :
0-7803-7152-6
Type :
conf
DOI :
10.1109/ITHERM.2002.1012489
Filename :
1012489
Link To Document :
بازگشت