DocumentCode :
1848160
Title :
Short-term real-time traffic prediction methods: A survey
Author :
Barros, Joaquim ; Araujo, Miguel ; Rossetti, Rosaldo J. F.
Author_Institution :
Fac. of Eng., Univ. of Porto, Porto, Portugal
fYear :
2015
fDate :
3-5 June 2015
Firstpage :
132
Lastpage :
139
Abstract :
Short-term traffic prediction provides tools for improved road management by allowing the reduction of delays, incidents and other unexpected events. Different real-time approaches provide traffic managers with varying but valuable information. This paper reviews the literature regarding model-driven and data-driven approaches focusing on short-term realtime traffic prediction. We start by analyzing real-time traffic data collection, referring network state acquisition and description methods which are used as input to predictive algorithms. According to the input variables available, we describe common and useful traffic prediction outputs that should contribute to understand the panorama verified on a road network. We then discuss metrics commonly used to assess prediction accuracy, in order to understand a standardized way to compare the different approaches. We list, detail and compare existing model-driven and data-driven approaches that provide short-term real-time traffic predictions. This research leads to an understanding of the many advantages, disadvantages and trade-offs of the approaches studied and provides useful insights for future development. Despite the predominance of model-driven solutions for the last years, data-driven approaches also present good results suitable for Traffic Management usage.
Keywords :
data mining; road traffic; data-driven approaches; improved road management; model-driven approaches; real-time traffic data collection; road network; short-term real-time traffic prediction methods; traffic management usage; Data models; Measurement; Prediction algorithms; Predictive models; Real-time systems; Roads; Vehicles; data mining; data-driven; estimation; machine learning; model-driven; prediction; simulation; traffic;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Models and Technologies for Intelligent Transportation Systems (MT-ITS), 2015 International Conference on
Conference_Location :
Budapest
Print_ISBN :
978-9-6331-3140-4
Type :
conf
DOI :
10.1109/MTITS.2015.7223248
Filename :
7223248
Link To Document :
بازگشت